3.31 \(\int \frac{(a+b x^2) (e+f x^2)^{3/2}}{(c+d x^2)^{3/2}} \, dx\)

Optimal. Leaf size=369 \[ \frac{e^{3/2} \sqrt{c+d x^2} (3 a d f-4 b c f+3 b d e) \text{EllipticF}\left (\tan ^{-1}\left (\frac{\sqrt{f} x}{\sqrt{e}}\right ),1-\frac{d e}{c f}\right )}{3 c d^2 \sqrt{f} \sqrt{e+f x^2} \sqrt{\frac{e \left (c+d x^2\right )}{c \left (e+f x^2\right )}}}+\frac{f x \sqrt{c+d x^2} \sqrt{e+f x^2} (4 b c-3 a d)}{3 c d^2}+\frac{f x \sqrt{c+d x^2} (b c (7 d e-8 c f)-3 a d (d e-2 c f))}{3 c d^3 \sqrt{e+f x^2}}-\frac{\sqrt{e} \sqrt{f} \sqrt{c+d x^2} (b c (7 d e-8 c f)-3 a d (d e-2 c f)) E\left (\tan ^{-1}\left (\frac{\sqrt{f} x}{\sqrt{e}}\right )|1-\frac{d e}{c f}\right )}{3 c d^3 \sqrt{e+f x^2} \sqrt{\frac{e \left (c+d x^2\right )}{c \left (e+f x^2\right )}}}-\frac{x \left (e+f x^2\right )^{3/2} (b c-a d)}{c d \sqrt{c+d x^2}} \]

[Out]

(f*(b*c*(7*d*e - 8*c*f) - 3*a*d*(d*e - 2*c*f))*x*Sqrt[c + d*x^2])/(3*c*d^3*Sqrt[e + f*x^2]) + ((4*b*c - 3*a*d)
*f*x*Sqrt[c + d*x^2]*Sqrt[e + f*x^2])/(3*c*d^2) - ((b*c - a*d)*x*(e + f*x^2)^(3/2))/(c*d*Sqrt[c + d*x^2]) - (S
qrt[e]*Sqrt[f]*(b*c*(7*d*e - 8*c*f) - 3*a*d*(d*e - 2*c*f))*Sqrt[c + d*x^2]*EllipticE[ArcTan[(Sqrt[f]*x)/Sqrt[e
]], 1 - (d*e)/(c*f)])/(3*c*d^3*Sqrt[(e*(c + d*x^2))/(c*(e + f*x^2))]*Sqrt[e + f*x^2]) + (e^(3/2)*(3*b*d*e - 4*
b*c*f + 3*a*d*f)*Sqrt[c + d*x^2]*EllipticF[ArcTan[(Sqrt[f]*x)/Sqrt[e]], 1 - (d*e)/(c*f)])/(3*c*d^2*Sqrt[f]*Sqr
t[(e*(c + d*x^2))/(c*(e + f*x^2))]*Sqrt[e + f*x^2])

________________________________________________________________________________________

Rubi [A]  time = 0.399909, antiderivative size = 369, normalized size of antiderivative = 1., number of steps used = 6, number of rules used = 6, integrand size = 30, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.2, Rules used = {526, 528, 531, 418, 492, 411} \[ \frac{e^{3/2} \sqrt{c+d x^2} (3 a d f-4 b c f+3 b d e) F\left (\tan ^{-1}\left (\frac{\sqrt{f} x}{\sqrt{e}}\right )|1-\frac{d e}{c f}\right )}{3 c d^2 \sqrt{f} \sqrt{e+f x^2} \sqrt{\frac{e \left (c+d x^2\right )}{c \left (e+f x^2\right )}}}+\frac{f x \sqrt{c+d x^2} \sqrt{e+f x^2} (4 b c-3 a d)}{3 c d^2}+\frac{f x \sqrt{c+d x^2} (b c (7 d e-8 c f)-3 a d (d e-2 c f))}{3 c d^3 \sqrt{e+f x^2}}-\frac{\sqrt{e} \sqrt{f} \sqrt{c+d x^2} (b c (7 d e-8 c f)-3 a d (d e-2 c f)) E\left (\tan ^{-1}\left (\frac{\sqrt{f} x}{\sqrt{e}}\right )|1-\frac{d e}{c f}\right )}{3 c d^3 \sqrt{e+f x^2} \sqrt{\frac{e \left (c+d x^2\right )}{c \left (e+f x^2\right )}}}-\frac{x \left (e+f x^2\right )^{3/2} (b c-a d)}{c d \sqrt{c+d x^2}} \]

Antiderivative was successfully verified.

[In]

Int[((a + b*x^2)*(e + f*x^2)^(3/2))/(c + d*x^2)^(3/2),x]

[Out]

(f*(b*c*(7*d*e - 8*c*f) - 3*a*d*(d*e - 2*c*f))*x*Sqrt[c + d*x^2])/(3*c*d^3*Sqrt[e + f*x^2]) + ((4*b*c - 3*a*d)
*f*x*Sqrt[c + d*x^2]*Sqrt[e + f*x^2])/(3*c*d^2) - ((b*c - a*d)*x*(e + f*x^2)^(3/2))/(c*d*Sqrt[c + d*x^2]) - (S
qrt[e]*Sqrt[f]*(b*c*(7*d*e - 8*c*f) - 3*a*d*(d*e - 2*c*f))*Sqrt[c + d*x^2]*EllipticE[ArcTan[(Sqrt[f]*x)/Sqrt[e
]], 1 - (d*e)/(c*f)])/(3*c*d^3*Sqrt[(e*(c + d*x^2))/(c*(e + f*x^2))]*Sqrt[e + f*x^2]) + (e^(3/2)*(3*b*d*e - 4*
b*c*f + 3*a*d*f)*Sqrt[c + d*x^2]*EllipticF[ArcTan[(Sqrt[f]*x)/Sqrt[e]], 1 - (d*e)/(c*f)])/(3*c*d^2*Sqrt[f]*Sqr
t[(e*(c + d*x^2))/(c*(e + f*x^2))]*Sqrt[e + f*x^2])

Rule 526

Int[((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_.)*((e_) + (f_.)*(x_)^(n_)), x_Symbol] :> -Simp[
((b*e - a*f)*x*(a + b*x^n)^(p + 1)*(c + d*x^n)^q)/(a*b*n*(p + 1)), x] + Dist[1/(a*b*n*(p + 1)), Int[(a + b*x^n
)^(p + 1)*(c + d*x^n)^(q - 1)*Simp[c*(b*e*n*(p + 1) + b*e - a*f) + d*(b*e*n*(p + 1) + (b*e - a*f)*(n*q + 1))*x
^n, x], x], x] /; FreeQ[{a, b, c, d, e, f, n}, x] && LtQ[p, -1] && GtQ[q, 0]

Rule 528

Int[((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_))^(q_.)*((e_) + (f_.)*(x_)^(n_)), x_Symbol] :> Simp[
(f*x*(a + b*x^n)^(p + 1)*(c + d*x^n)^q)/(b*(n*(p + q + 1) + 1)), x] + Dist[1/(b*(n*(p + q + 1) + 1)), Int[(a +
 b*x^n)^p*(c + d*x^n)^(q - 1)*Simp[c*(b*e - a*f + b*e*n*(p + q + 1)) + (d*(b*e - a*f) + f*n*q*(b*c - a*d) + b*
d*e*n*(p + q + 1))*x^n, x], x], x] /; FreeQ[{a, b, c, d, e, f, n, p}, x] && GtQ[q, 0] && NeQ[n*(p + q + 1) + 1
, 0]

Rule 531

Int[((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_))^(q_.)*((e_) + (f_.)*(x_)^(n_)), x_Symbol] :> Dist[
e, Int[(a + b*x^n)^p*(c + d*x^n)^q, x], x] + Dist[f, Int[x^n*(a + b*x^n)^p*(c + d*x^n)^q, x], x] /; FreeQ[{a,
b, c, d, e, f, n, p, q}, x]

Rule 418

Int[1/(Sqrt[(a_) + (b_.)*(x_)^2]*Sqrt[(c_) + (d_.)*(x_)^2]), x_Symbol] :> Simp[(Sqrt[a + b*x^2]*EllipticF[ArcT
an[Rt[d/c, 2]*x], 1 - (b*c)/(a*d)])/(a*Rt[d/c, 2]*Sqrt[c + d*x^2]*Sqrt[(c*(a + b*x^2))/(a*(c + d*x^2))]), x] /
; FreeQ[{a, b, c, d}, x] && PosQ[d/c] && PosQ[b/a] &&  !SimplerSqrtQ[b/a, d/c]

Rule 492

Int[(x_)^2/(Sqrt[(a_) + (b_.)*(x_)^2]*Sqrt[(c_) + (d_.)*(x_)^2]), x_Symbol] :> Simp[(x*Sqrt[a + b*x^2])/(b*Sqr
t[c + d*x^2]), x] - Dist[c/b, Int[Sqrt[a + b*x^2]/(c + d*x^2)^(3/2), x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[b
*c - a*d, 0] && PosQ[b/a] && PosQ[d/c] &&  !SimplerSqrtQ[b/a, d/c]

Rule 411

Int[Sqrt[(a_) + (b_.)*(x_)^2]/((c_) + (d_.)*(x_)^2)^(3/2), x_Symbol] :> Simp[(Sqrt[a + b*x^2]*EllipticE[ArcTan
[Rt[d/c, 2]*x], 1 - (b*c)/(a*d)])/(c*Rt[d/c, 2]*Sqrt[c + d*x^2]*Sqrt[(c*(a + b*x^2))/(a*(c + d*x^2))]), x] /;
FreeQ[{a, b, c, d}, x] && PosQ[b/a] && PosQ[d/c]

Rubi steps

\begin{align*} \int \frac{\left (a+b x^2\right ) \left (e+f x^2\right )^{3/2}}{\left (c+d x^2\right )^{3/2}} \, dx &=-\frac{(b c-a d) x \left (e+f x^2\right )^{3/2}}{c d \sqrt{c+d x^2}}-\frac{\int \frac{\sqrt{e+f x^2} \left (-b c e-(4 b c-3 a d) f x^2\right )}{\sqrt{c+d x^2}} \, dx}{c d}\\ &=\frac{(4 b c-3 a d) f x \sqrt{c+d x^2} \sqrt{e+f x^2}}{3 c d^2}-\frac{(b c-a d) x \left (e+f x^2\right )^{3/2}}{c d \sqrt{c+d x^2}}-\frac{\int \frac{-c e (3 b d e-4 b c f+3 a d f)-f (b c (7 d e-8 c f)-3 a d (d e-2 c f)) x^2}{\sqrt{c+d x^2} \sqrt{e+f x^2}} \, dx}{3 c d^2}\\ &=\frac{(4 b c-3 a d) f x \sqrt{c+d x^2} \sqrt{e+f x^2}}{3 c d^2}-\frac{(b c-a d) x \left (e+f x^2\right )^{3/2}}{c d \sqrt{c+d x^2}}+\frac{(e (3 b d e-4 b c f+3 a d f)) \int \frac{1}{\sqrt{c+d x^2} \sqrt{e+f x^2}} \, dx}{3 d^2}+\frac{(f (b c (7 d e-8 c f)-3 a d (d e-2 c f))) \int \frac{x^2}{\sqrt{c+d x^2} \sqrt{e+f x^2}} \, dx}{3 c d^2}\\ &=\frac{f (b c (7 d e-8 c f)-3 a d (d e-2 c f)) x \sqrt{c+d x^2}}{3 c d^3 \sqrt{e+f x^2}}+\frac{(4 b c-3 a d) f x \sqrt{c+d x^2} \sqrt{e+f x^2}}{3 c d^2}-\frac{(b c-a d) x \left (e+f x^2\right )^{3/2}}{c d \sqrt{c+d x^2}}+\frac{e^{3/2} (3 b d e-4 b c f+3 a d f) \sqrt{c+d x^2} F\left (\tan ^{-1}\left (\frac{\sqrt{f} x}{\sqrt{e}}\right )|1-\frac{d e}{c f}\right )}{3 c d^2 \sqrt{f} \sqrt{\frac{e \left (c+d x^2\right )}{c \left (e+f x^2\right )}} \sqrt{e+f x^2}}-\frac{(e f (b c (7 d e-8 c f)-3 a d (d e-2 c f))) \int \frac{\sqrt{c+d x^2}}{\left (e+f x^2\right )^{3/2}} \, dx}{3 c d^3}\\ &=\frac{f (b c (7 d e-8 c f)-3 a d (d e-2 c f)) x \sqrt{c+d x^2}}{3 c d^3 \sqrt{e+f x^2}}+\frac{(4 b c-3 a d) f x \sqrt{c+d x^2} \sqrt{e+f x^2}}{3 c d^2}-\frac{(b c-a d) x \left (e+f x^2\right )^{3/2}}{c d \sqrt{c+d x^2}}-\frac{\sqrt{e} \sqrt{f} (b c (7 d e-8 c f)-3 a d (d e-2 c f)) \sqrt{c+d x^2} E\left (\tan ^{-1}\left (\frac{\sqrt{f} x}{\sqrt{e}}\right )|1-\frac{d e}{c f}\right )}{3 c d^3 \sqrt{\frac{e \left (c+d x^2\right )}{c \left (e+f x^2\right )}} \sqrt{e+f x^2}}+\frac{e^{3/2} (3 b d e-4 b c f+3 a d f) \sqrt{c+d x^2} F\left (\tan ^{-1}\left (\frac{\sqrt{f} x}{\sqrt{e}}\right )|1-\frac{d e}{c f}\right )}{3 c d^2 \sqrt{f} \sqrt{\frac{e \left (c+d x^2\right )}{c \left (e+f x^2\right )}} \sqrt{e+f x^2}}\\ \end{align*}

Mathematica [C]  time = 0.706238, size = 248, normalized size = 0.67 \[ \frac{\sqrt{\frac{d}{c}} \left (-i e \sqrt{\frac{d x^2}{c}+1} \sqrt{\frac{f x^2}{e}+1} (4 b c-3 a d) (c f-d e) \text{EllipticF}\left (i \sinh ^{-1}\left (x \sqrt{\frac{d}{c}}\right ),\frac{c f}{d e}\right )+x \sqrt{\frac{d}{c}} \left (e+f x^2\right ) \left (3 a d (d e-c f)+b c \left (4 c f-3 d e+d f x^2\right )\right )+i e \sqrt{\frac{d x^2}{c}+1} \sqrt{\frac{f x^2}{e}+1} (3 a d (d e-2 c f)+b c (8 c f-7 d e)) E\left (i \sinh ^{-1}\left (\sqrt{\frac{d}{c}} x\right )|\frac{c f}{d e}\right )\right )}{3 d^3 \sqrt{c+d x^2} \sqrt{e+f x^2}} \]

Antiderivative was successfully verified.

[In]

Integrate[((a + b*x^2)*(e + f*x^2)^(3/2))/(c + d*x^2)^(3/2),x]

[Out]

(Sqrt[d/c]*(Sqrt[d/c]*x*(e + f*x^2)*(3*a*d*(d*e - c*f) + b*c*(-3*d*e + 4*c*f + d*f*x^2)) + I*e*(3*a*d*(d*e - 2
*c*f) + b*c*(-7*d*e + 8*c*f))*Sqrt[1 + (d*x^2)/c]*Sqrt[1 + (f*x^2)/e]*EllipticE[I*ArcSinh[Sqrt[d/c]*x], (c*f)/
(d*e)] - I*(4*b*c - 3*a*d)*e*(-(d*e) + c*f)*Sqrt[1 + (d*x^2)/c]*Sqrt[1 + (f*x^2)/e]*EllipticF[I*ArcSinh[Sqrt[d
/c]*x], (c*f)/(d*e)]))/(3*d^3*Sqrt[c + d*x^2]*Sqrt[e + f*x^2])

________________________________________________________________________________________

Maple [A]  time = 0.025, size = 671, normalized size = 1.8 \begin{align*} -{\frac{1}{3\,{d}^{2} \left ( df{x}^{4}+cf{x}^{2}+de{x}^{2}+ce \right ) c}\sqrt{f{x}^{2}+e}\sqrt{d{x}^{2}+c} \left ( -{x}^{5}bcd{f}^{2}\sqrt{-{\frac{d}{c}}}+3\,{x}^{3}acd{f}^{2}\sqrt{-{\frac{d}{c}}}-3\,{x}^{3}a{d}^{2}ef\sqrt{-{\frac{d}{c}}}-4\,{x}^{3}b{c}^{2}{f}^{2}\sqrt{-{\frac{d}{c}}}+2\,{x}^{3}bcdef\sqrt{-{\frac{d}{c}}}+3\,{\it EllipticF} \left ( x\sqrt{-{\frac{d}{c}}},\sqrt{{\frac{cf}{de}}} \right ) acdef\sqrt{{\frac{d{x}^{2}+c}{c}}}\sqrt{{\frac{f{x}^{2}+e}{e}}}-3\,{\it EllipticF} \left ( x\sqrt{-{\frac{d}{c}}},\sqrt{{\frac{cf}{de}}} \right ) a{d}^{2}{e}^{2}\sqrt{{\frac{d{x}^{2}+c}{c}}}\sqrt{{\frac{f{x}^{2}+e}{e}}}-4\,{\it EllipticF} \left ( x\sqrt{-{\frac{d}{c}}},\sqrt{{\frac{cf}{de}}} \right ) b{c}^{2}ef\sqrt{{\frac{d{x}^{2}+c}{c}}}\sqrt{{\frac{f{x}^{2}+e}{e}}}+4\,{\it EllipticF} \left ( x\sqrt{-{\frac{d}{c}}},\sqrt{{\frac{cf}{de}}} \right ) bcd{e}^{2}\sqrt{{\frac{d{x}^{2}+c}{c}}}\sqrt{{\frac{f{x}^{2}+e}{e}}}-6\,{\it EllipticE} \left ( x\sqrt{-{\frac{d}{c}}},\sqrt{{\frac{cf}{de}}} \right ) acdef\sqrt{{\frac{d{x}^{2}+c}{c}}}\sqrt{{\frac{f{x}^{2}+e}{e}}}+3\,{\it EllipticE} \left ( x\sqrt{-{\frac{d}{c}}},\sqrt{{\frac{cf}{de}}} \right ) a{d}^{2}{e}^{2}\sqrt{{\frac{d{x}^{2}+c}{c}}}\sqrt{{\frac{f{x}^{2}+e}{e}}}+8\,{\it EllipticE} \left ( x\sqrt{-{\frac{d}{c}}},\sqrt{{\frac{cf}{de}}} \right ) b{c}^{2}ef\sqrt{{\frac{d{x}^{2}+c}{c}}}\sqrt{{\frac{f{x}^{2}+e}{e}}}-7\,{\it EllipticE} \left ( x\sqrt{-{\frac{d}{c}}},\sqrt{{\frac{cf}{de}}} \right ) bcd{e}^{2}\sqrt{{\frac{d{x}^{2}+c}{c}}}\sqrt{{\frac{f{x}^{2}+e}{e}}}+3\,xacdef\sqrt{-{\frac{d}{c}}}-3\,xa{d}^{2}{e}^{2}\sqrt{-{\frac{d}{c}}}-4\,xb{c}^{2}ef\sqrt{-{\frac{d}{c}}}+3\,xbcd{e}^{2}\sqrt{-{\frac{d}{c}}} \right ){\frac{1}{\sqrt{-{\frac{d}{c}}}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((b*x^2+a)*(f*x^2+e)^(3/2)/(d*x^2+c)^(3/2),x)

[Out]

-1/3*(f*x^2+e)^(1/2)*(d*x^2+c)^(1/2)*(-x^5*b*c*d*f^2*(-d/c)^(1/2)+3*x^3*a*c*d*f^2*(-d/c)^(1/2)-3*x^3*a*d^2*e*f
*(-d/c)^(1/2)-4*x^3*b*c^2*f^2*(-d/c)^(1/2)+2*x^3*b*c*d*e*f*(-d/c)^(1/2)+3*EllipticF(x*(-d/c)^(1/2),(c*f/d/e)^(
1/2))*a*c*d*e*f*((d*x^2+c)/c)^(1/2)*((f*x^2+e)/e)^(1/2)-3*EllipticF(x*(-d/c)^(1/2),(c*f/d/e)^(1/2))*a*d^2*e^2*
((d*x^2+c)/c)^(1/2)*((f*x^2+e)/e)^(1/2)-4*EllipticF(x*(-d/c)^(1/2),(c*f/d/e)^(1/2))*b*c^2*e*f*((d*x^2+c)/c)^(1
/2)*((f*x^2+e)/e)^(1/2)+4*EllipticF(x*(-d/c)^(1/2),(c*f/d/e)^(1/2))*b*c*d*e^2*((d*x^2+c)/c)^(1/2)*((f*x^2+e)/e
)^(1/2)-6*EllipticE(x*(-d/c)^(1/2),(c*f/d/e)^(1/2))*a*c*d*e*f*((d*x^2+c)/c)^(1/2)*((f*x^2+e)/e)^(1/2)+3*Ellipt
icE(x*(-d/c)^(1/2),(c*f/d/e)^(1/2))*a*d^2*e^2*((d*x^2+c)/c)^(1/2)*((f*x^2+e)/e)^(1/2)+8*EllipticE(x*(-d/c)^(1/
2),(c*f/d/e)^(1/2))*b*c^2*e*f*((d*x^2+c)/c)^(1/2)*((f*x^2+e)/e)^(1/2)-7*EllipticE(x*(-d/c)^(1/2),(c*f/d/e)^(1/
2))*b*c*d*e^2*((d*x^2+c)/c)^(1/2)*((f*x^2+e)/e)^(1/2)+3*x*a*c*d*e*f*(-d/c)^(1/2)-3*x*a*d^2*e^2*(-d/c)^(1/2)-4*
x*b*c^2*e*f*(-d/c)^(1/2)+3*x*b*c*d*e^2*(-d/c)^(1/2))/d^2/(d*f*x^4+c*f*x^2+d*e*x^2+c*e)/(-d/c)^(1/2)/c

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (b x^{2} + a\right )}{\left (f x^{2} + e\right )}^{\frac{3}{2}}}{{\left (d x^{2} + c\right )}^{\frac{3}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x^2+a)*(f*x^2+e)^(3/2)/(d*x^2+c)^(3/2),x, algorithm="maxima")

[Out]

integrate((b*x^2 + a)*(f*x^2 + e)^(3/2)/(d*x^2 + c)^(3/2), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{{\left (b f x^{4} +{\left (b e + a f\right )} x^{2} + a e\right )} \sqrt{d x^{2} + c} \sqrt{f x^{2} + e}}{d^{2} x^{4} + 2 \, c d x^{2} + c^{2}}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x^2+a)*(f*x^2+e)^(3/2)/(d*x^2+c)^(3/2),x, algorithm="fricas")

[Out]

integral((b*f*x^4 + (b*e + a*f)*x^2 + a*e)*sqrt(d*x^2 + c)*sqrt(f*x^2 + e)/(d^2*x^4 + 2*c*d*x^2 + c^2), x)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\left (a + b x^{2}\right ) \left (e + f x^{2}\right )^{\frac{3}{2}}}{\left (c + d x^{2}\right )^{\frac{3}{2}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x**2+a)*(f*x**2+e)**(3/2)/(d*x**2+c)**(3/2),x)

[Out]

Integral((a + b*x**2)*(e + f*x**2)**(3/2)/(c + d*x**2)**(3/2), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (b x^{2} + a\right )}{\left (f x^{2} + e\right )}^{\frac{3}{2}}}{{\left (d x^{2} + c\right )}^{\frac{3}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x^2+a)*(f*x^2+e)^(3/2)/(d*x^2+c)^(3/2),x, algorithm="giac")

[Out]

integrate((b*x^2 + a)*(f*x^2 + e)^(3/2)/(d*x^2 + c)^(3/2), x)